StabilizedModulatedLaser¶
Class Arguments
Argument |
Type |
Default Value |
---|---|---|
photodiode |
Photodiode |
|
modulator |
LightModulator |
|
laser_source |
LaserSource |
|
switch |
Switchable |
None |
fm_device |
TStr |
mod |
am_device |
TStr |
mod |
src_transmission |
TFloat |
1.0 |
zero_freq |
TFloat |
None |
power |
TFloat |
0.001 |
Bold arguments are mandatory. For more documentation on the listed arguments refer to the class definition below. If parameters appear in this list but not in the class definition below, please recursively check the linked base classes for the definition of the parameter.
Inheritance Diagram
Example Component Dictionary
{
"laser_example": {
"classname": "atomiq.components.laser.StabilizedModulatedLaser",
"arguments": {
"photodiode": "<mandatory parameter (Photodiode)>",
"modulator": "<mandatory parameter (LightModulator)>",
"laser_source": "<mandatory parameter (LaserSource)>",
"switch": null,
"fm_device": "mod",
"am_device": "mod",
"src_transmission": 1.0,
"zero_freq": null,
"power": 0.001
}
}
}
Class Description
- class atomiq.components.laser.StabilizedModulatedLaser(photodiode, *args, **kwargs)[source]
Bases:
ModulatedLaser
,Measurable
A power-stabilized modulated laser
With some means of measuring the laser power after the amplitude modulator and a feedback, the laser power can be stabilized. This is an abstract class to represent this kind of setups. To monitor the power of the laser after the modulator, a photodiode is required.
- Parameters:
photodiode (Photodiode) -- The photodiode that monitors the laser power
A Switchable has one or more channel(s) that can be switched on or off
- append_to_dataset(key, value)
Append a value to a dataset.
The target dataset must be a list (i.e. support
append()
), and must have previously been set from this experiment.The broadcast/persist/archive mode of the given key remains unchanged from when the dataset was last set. Appended values are transmitted efficiently as incremental modifications in broadcast mode.
- arb(duration, samples_amp=[], samples_power=[], samples_freq=[], samples_det=[], samples_phase=[], repetitions=1, prepare_only=False, run_prepared=False, transform_amp=<function identity_float>, transform_freq=<function identity_float>, transform_phase=<function identity_float>)
Play Arbitrary Samples from a List
This method allows to set the output amplitude, frequency an phase according to the values specified in respective lists. The whole sequence is played in the specified duration. The pattern store in the sample list can also be repeated.
We supports a scheme to prepare the arb function before it is actually used. If that is needed, run this function with prepare_only = True when the arb should be prepared and with run_only = True when the prepared arb should be played. In both calls the other parameters have to be passed.
- Parameters:
samples_amp (artiq.compiler.types.TMono('list', OrderedDict([('elt', artiq.compiler.types.TMono('float', OrderedDict()))]))) -- List of amplitude samples. If this list is empty (default), the amplitude is not modified.
samples_power (artiq.compiler.types.TMono('list', OrderedDict([('elt', artiq.compiler.types.TMono('float', OrderedDict()))]))) -- List of power samples. If this list is empty (default), the amplitude is not modified. This overwrites samples_amp.
samples_freq (artiq.compiler.types.TMono('list', OrderedDict([('elt', artiq.compiler.types.TMono('float', OrderedDict()))]))) -- List of frequency samples. If this list is empty (default), the frequency is not modified.
samples_det (artiq.compiler.types.TMono('list', OrderedDict([('elt', artiq.compiler.types.TMono('float', OrderedDict()))]))) -- List of frequency samples relative to the zero frequency. If this list is empty (default), the frequency is not modified. This overwrites samples_frequency
samples_phase (artiq.compiler.types.TMono('list', OrderedDict([('elt', artiq.compiler.types.TMono('float', OrderedDict()))]))) -- List of phase samples. If this list is empty (default), the phase is not modified.
duration (artiq.compiler.types.TMono('float', OrderedDict())) -- The time in which the whole sequence of samples should be played back [s].
repetitions (artiq.compiler.types.TMono('int', OrderedDict([('width', artiq.compiler.types.TValue(32))]))) -- Number of times the sequence of all samples should be played. (default 1)
prepare_only (artiq.compiler.types.TMono('bool', OrderedDict()))
run_prepared (artiq.compiler.types.TMono('bool', OrderedDict()))
- build()
Should be implemented by the user to request arguments.
Other initialization steps such as requesting devices may also be performed here.
There are two situations where the requested devices are replaced by
DummyDevice()
and arguments are set to their defaults (orNone
) instead: when the repository is scanned to build the list of available experiments and when the dataset browserartiq_browser
is used to open or run the analysis stage of an experiment. Do not rely on being able to operate on devices or arguments inbuild()
.Datasets are read-only in this method.
Leftover positional and keyword arguments from the constructor are forwarded to this method. This is intended for experiments that are only meant to be executed programmatically (not from the GUI).
- call_child_method(method, *args, **kwargs)
Calls the named method for each child, if it exists for that child, in the order of registration.
- Parameters:
method (str) -- Name of the method to call
args -- Tuple of positional arguments to pass to all children
kwargs -- Dict of keyword arguments to pass to all children
- detune(frequency)
Alias for
set_detuning()
- Parameters:
frequency (artiq.compiler.types.TMono('float', OrderedDict()))
- get_argument(key, processor, group=None, tooltip=None)
Retrieves and returns the value of an argument.
This function should only be called from
build
.- Parameters:
key -- Name of the argument.
processor -- A description of how to process the argument, such as instances of
BooleanValue
andNumberValue
.group -- An optional string that defines what group the argument belongs to, for user interface purposes.
tooltip -- An optional string to describe the argument in more detail, applied as a tooltip to the argument name in the user interface.
- get_dataset(key, default=<class 'artiq.language.environment.NoDefault'>, archive=True)
Returns the contents of a dataset.
The local storage is searched first, followed by the master storage (which contains the broadcasted datasets from all experiments) if the key was not found initially.
If the dataset does not exist, returns the default value. If no default is provided, raises
KeyError
.By default, datasets obtained by this method are archived into the output HDF5 file of the experiment. If an archived dataset is requested more than one time or is modified, only the value at the time of the first call is archived. This may impact reproducibility of experiments.
- Parameters:
archive -- Set to
False
to prevent archival together with the run's results. Default isTrue
.
- get_dataset_metadata(key, default=<class 'artiq.language.environment.NoDefault'>)
Returns the metadata of a dataset.
Returns dictionary with items describing the dataset, including the units, scale and precision.
This function is used to get additional information for displaying the dataset.
See
set_dataset()
for documentation of metadata items.
- get_device(key)
Creates and returns a device driver.
- get_device_db()
Returns the full contents of the device database.
- interactive(title='')
Request arguments from the user interactively.
This context manager returns a namespace object on which the method
setattr_argument()
should be called, with the usual semantics.When the context manager terminates, the experiment is blocked and the user is presented with the requested argument widgets. After the user enters values, the experiment is resumed and the namespace contains the values of the arguments.
If the interactive arguments request is cancelled, raises
CancelledArgsError
.
- mutate_dataset(key, index, value)
Mutate an existing dataset at the given index (e.g. set a value at a given position in a NumPy array)
If the dataset was created in broadcast mode, the modification is immediately transmitted.
If the index is a tuple of integers, it is interpreted as
slice(*index)
. If the index is a tuple of tuples, each sub-tuple is interpreted asslice(*sub_tuple)
(multi-dimensional slicing).
- ramp(duration, frequency_start=nan, frequency_end=nan, detuning_start=nan, detuning_end=nan, amplitude_start=nan, amplitude_end=nan, power_start=nan, power_end=nan, ramp_timestep=nan, ramp_steps=-1)
Ramp frequency and/or power/amplitude over a given duration.
Parameters default to
-1
ornan
to indicate no change. If no starting value is given, the ramp starts from the last frequency/amplitude which was set.Either power or amplitude can be given to ramp the intensity of the laser. If power is given, it overwrites the value for the amplitude
This method advances the timeline by ´duration´
- Parameters:
duration (artiq.compiler.types.TMono('float', OrderedDict())) -- ramp duration [s]
frequency_start (artiq.compiler.types.TMono('float', OrderedDict())) -- initial frequency [Hz]
frequency_end (artiq.compiler.types.TMono('float', OrderedDict())) -- end frequency [Hz]
detuning_start (artiq.compiler.types.TMono('float', OrderedDict())) -- initial detuning [Hz]
detuning_start -- final detuning [Hz]
amplitude_start (artiq.compiler.types.TMono('float', OrderedDict())) -- initial amplitude
amplitude_end (artiq.compiler.types.TMono('float', OrderedDict())) -- end amplitude
power_start (artiq.compiler.types.TMono('float', OrderedDict())) -- initial power [W]
power_end (artiq.compiler.types.TMono('float', OrderedDict())) -- final power [W]
detuning_end (artiq.compiler.types.TMono('float', OrderedDict()))
ramp_timestep (artiq.compiler.types.TMono('float', OrderedDict()))
ramp_steps (artiq.compiler.types.TMono('int', OrderedDict([('width', artiq.compiler.types.TValue(32))])))
- set_dataset(key, value, *, unit=None, scale=None, precision=None, broadcast=False, persist=False, archive=True)
Sets the contents and handling modes of a dataset.
Datasets must be scalars (
bool
,int
,float
or NumPy scalar) or NumPy arrays.- Parameters:
unit -- A string representing the unit of the value.
scale -- A numerical factor that is used to adjust the value of the dataset to match the scale or units of the experiment's reference frame when the value is displayed.
precision -- The maximum number of digits to print after the decimal point. Set
precision=None
to print as many digits as necessary to uniquely specify the value. Uses IEEE unbiased rounding.broadcast -- the data is sent in real-time to the master, which dispatches it.
persist -- the master should store the data on-disk. Implies broadcast.
archive -- the data is saved into the local storage of the current run (archived as a HDF5 file).
- set_default_scheduling(priority=None, pipeline_name=None, flush=None)
Sets the default scheduling options.
This function should only be called from
build
.
- set_detuning(detuning)
Set the detuning of the light from the frequency defined by zero_freq
Note
If you are using a modulator (e.g. AOM) the center frequency is not taken into account. If you want to set the detuning from the center frequency of the modulator use self.modulator.set_detuning
- Parameters:
detuning (artiq.compiler.types.TMono('float', OrderedDict())) -- Detuning in Hz
- set_frequency(frequency)
Set the absolute frequency of the light after modulation
- Parameters:
frequency (artiq.compiler.types.TMono('float', OrderedDict())) -- Absolute frequency of the light after modulation in Hz
- set_power(power)
Set the absolute power of the light after modulation
- Parameters:
power (artiq.compiler.types.TMono('float', OrderedDict())) -- Absolute power of the light after modulation in W
- setattr_argument(key, processor=None, group=None, tooltip=None)
Sets an argument as attribute. The names of the argument and of the attribute are the same.
The key is added to the instance's kernel invariants.
- setattr_dataset(key, default=<class 'artiq.language.environment.NoDefault'>, archive=True)
Sets the contents of a dataset as attribute. The names of the dataset and of the attribute are the same.
- setattr_device(key)
Sets a device driver as attribute. The names of the device driver and of the attribute are the same.
The key is added to the instance's kernel invariants.