TTLSoftwareLogicHBridgedCurrentSourceΒΆ

Class Arguments

Argument

Type

Default Value

switch_forward

Switchable

switch_reverse

Switchable

current_source

CurrentSource

min_current

TFloat

-inf

max_current

TFloat

inf

default_ramp_steps

TInt32

30

Bold arguments are mandatory. For more documentation on the listed arguments refer to the class definition below. If parameters appear in this list but not in the class definition below, please recursively check the linked base classes for the definition of the parameter.

Inheritance Diagram

Inheritance diagram of atomiq.components.electronics.currentsource.TTLSoftwareLogicHBridgedCurrentSource

Example Component Dictionary

   {
    "currentsource_example": {
        "classname": "atomiq.components.electronics.currentsource.TTLSoftwareLogicHBridgedCurrentSource",
        "arguments": {
            "switch_forward": "<mandatory parameter (Switchable)>",
            "switch_reverse": "<mandatory parameter (Switchable)>",
            "current_source": "<mandatory parameter (CurrentSource)>",
            "min_current": -1e999,
            "max_current": 1e999,
            "default_ramp_steps": 30
        }
    }
}

Class Description

class atomiq.components.electronics.currentsource.TTLSoftwareLogicHBridgedCurrentSource(switch_forward, switch_reverse, *args, **kwargs)[source]

Bases: HBridgedCurrentSource

H-bridged current source with control logic implemented in software

Each pair of MOSFETs is directly controlled by one switch. So when both TTLs are off, the bridge is off, but also when both are on the PSU is shorted.

switch_forward

switch_reverse

current flow

off

off

off

off

on

reverse

on

off

forward

on

on

INVALID

Parameters:
  • switch_forward (Switchable) -- TTL to enable forward pair of MOSFETs

  • switch_reverse (Switchable) -- TTL to enable reverse pair of MOSFETs

A Parametrizable is an entity that can be controlled by one or more continuous parameter(s)

class HBridgeState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: IntEnum

conjugate()

Returns self, the complex conjugate of any int.

bit_length()

Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6
bit_count()

Number of ones in the binary representation of the absolute value of self.

Also known as the population count.

>>> bin(13)
'0b1101'
>>> (13).bit_count()
3
to_bytes(length=1, byteorder='big', *, signed=False)

Return an array of bytes representing an integer.

length

Length of bytes object to use. An OverflowError is raised if the integer is not representable with the given number of bytes. Default is length 1.

byteorder

The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. Default is to use 'big'.

signed

Determines whether two's complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised.

from_bytes(byteorder='big', *, signed=False)

Return the integer represented by the given array of bytes.

bytes

Holds the array of bytes to convert. The argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol.

byteorder

The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. Default is to use 'big'.

signed

Indicates whether two's complement is used to represent the integer.

as_integer_ratio()

Return integer ratio.

Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator.

>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)
real

the real part of a complex number

imag

the imaginary part of a complex number

numerator

the numerator of a rational number in lowest terms

denominator

the denominator of a rational number in lowest terms

ramp_current(duration, current_end, current_start=nan, ramp_timestep=-1.0, ramp_steps=-1)

Ramp current over a given duration.

This method advances the timeline by duration

Parameters:
  • duration (artiq.compiler.types.TMono('float', OrderedDict())) -- ramp duration [s]

  • current_end (artiq.compiler.types.TMono('float', OrderedDict())) -- end current [A]

  • current_start (artiq.compiler.types.TMono('float', OrderedDict())) -- initial current [A]. If not given, the ramp starts from the current operating current.

  • ramp_timestep (artiq.compiler.types.TMono('float', OrderedDict()))

  • ramp_steps (artiq.compiler.types.TMono('int', OrderedDict([('width', artiq.compiler.types.TValue(32))])))

set_current(current)

Set the current delivered by the current source

Parameters:

current (artiq.compiler.types.TMono('float', OrderedDict())) -- Current in A